The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

__) JavaSpecialists

The Hidden Art of Thread-Safe
Programming: Exploring
java.util.concurrent
Dr Heinz'M. Kabutz

Last Updated 2025-10-21

© 2025 Heinz Kabutz - All Rights Reserved

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

A Tale of java.util.Vector

® One of the first classes in Java
— Part of Java 1.0

® Designed thread-safe from concurrent updates

— Most methods synchronized, locking on "this”
e But missed synchronization on read-only methods like size()

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Java 1.0 Vector

® size() could return stale values

public class Vectorl_0 {
protected int elementCount;

public final int size() {
return elementCount;

}.

public final synchronized void addElement(0Object obj) {

/] ...
1

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Moving to Java 1.1

® Introduced a potential race condition

public class Vectorl_1 implements java.io.Serializable {
protected int elementCount;

public final int size() {
return elementCount;

}.

public final synchronized void addElement(Object obj) {

/] ...
1

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Moving to Java 1.4

® Fixed size() visibility and serialization race condition

public class Vectorl_4 implements java.io.Serializable {
protected int elementCount;
public synchronized int size() A
return elementCount;

1

public synchronized void addElement(Object obj) A{
// ...

1

private synchronized void writeObject(ObjectOutputStream s)
throws I0Exception {
s.defaultWriteObject();

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

However, Java 1.4 Can Deadlock!

® Often, fixing one type of bug, introduces others

Vector vl = new Vector():

Vector v2 = new Vector();

vl.addElement(v2);

v2.addElement(vl);

// serialize v1 and v2 from two different threads

— Mentioned in The Java Specialists’' Newsletter #184
e https://www.javaspecialists.eu/archive/lssue184.html

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Moving to Java 1.7

® Fixed deadlock by calling writeFields() outside of lock

public class Vectorl_7 implements Serializable {
private void writeObject(java.io.0ObjectOutputStream s)

throws java.io.IOException 4

final java.io.0ObjectOutputStream.PutField fields = s.putFields();

final Object[] data;

synchronized (this) {
fields.put("capacityIncrement", capacityIncrement);
fields.put("elementCount", elementCount);
data = elementData.clone();

1

fields.put("elementData", data);

s.writeFields();

! JavaSpecialists.cu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

New Potential Deadlock Added Iin Java 8

® Should not call "alien methods" like accept() whilst locked

public class Vector8<E> implements Serializable {
public synchronized void forEach(Consumer<? super E> action) A
Objects.requireNonNull(action);
final int expectedModCount = modCount;
final E[] elementData = (E[]) this.elementData;
final i1nt elementCount = this.elementCount;

for (int i=0; modCount == expectedModCount && 1 < elementCount; i++) {
action.accept(elementDatal[il);

1
if (modCount != expectedModCount) A{

throw new ConcurrentModificationException();

}

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Takeaways from Vector Bugs
® Thread safety is subtle

® Tests don’t always expose concurrency bugs

— We need to know what to look for

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent 10

) JavaSpecialists

"__,.—- g

- java.util.concurrent Teardown

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Writing Correct Thread-Safe Code is a Challenge

® The Java Memory Model is our rule book

— happens-before, ordering, access safety, etc.
— However, we cannot test whether a class adheres to the JMM 100%

® We run our code, and hope it works correctly

— Some bugs are very hard to detect

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

LockSupport Rare Lost unpark()
® Bug 8074773

- In JDK 7, class loading could consume the unpark()
 Extremely difficult to diagnose and discover, took a week of CPU time

e Recommended workaround was to force LockSupport to load early

static {
// Prevent rare disastrous classloading in first call to LockSupport.park.
// See: https://bugs.openjdk. java.net/browse/JDK-8074773
Class<?> ensurelLoaded = LockSupport.class;

— Since JDK 9, ConcurrentHashMap ensures LockSupport is loaded

JavaSpecialists.cu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

So Why Study the java.util.concurrent Classes?
® Brian Goetz, JCIP:

— If you need to implement a state-dependent class the best strategy is
usually to build upon an existing library class such as Semaphore,
BlockingQueue, or CountDownLatch.

® By studying java.util.concurrent in detail, we learn

— What is available
— How to write robust, thread-safe classes

JavaSpecialists.cu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Good vs Bad Code

® We all make mistakes

— In German, we say: ,,Vertrauen ist gut, Kontrolle ist besser!“

— Test Driven Development
e Super difficult with multi-threaded code
e Java Concurrency Stress can help: github.com/openjdk/jcstress

® Better to rely on well-known synchronizers

— And then, use those that are most commonly used
 Favour ConcurrentHashMap over ConcurrentSkipListMap

* Favour LinkedBlockingQueue over LinkedBlockingDeque
JavaSpecialists.e.

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Contributing Bug Reports

® Anybody can report a Java bug: https://bugreport.java.com

— I've reported quite a few javaspecialists.eu/about/jdk-contributions/

— Most of these were in little used classes
* 1in LinkedTransferQueue (fixed in Java 1.8.0+70)
* 1 in ThreadLocalRandom (fixed in Java 21+9)
* 1 in ConcurrentSkipListMap (fixed in Java 24)
* 1in ArrayBlockingQueue (fixed in Java 24)
* 5 in LinkedBlockingDeque (all fixed in Java 26)

— The less used a class Is, the higher the chance of bugs

JavaSpecialists.cu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Eat Your Own Dogfood Collections

® How many new instances of each in the JDK

— 213: ConcurrentHashMap

— 11-24: CopyOnWriteArrayList, ConcurrentLinkedQueue,
ConcurrentLinkedDeque, FutureTask, LinkedBlockingQueue

— 2-6: CountDownLatch, ArrayBlockingQueue, SynchronousQueue,
ConcurrentSkipListSet

— 1: ConcurrentSkipListMap, LinkedBlockingDeque,
LinkedTransferQueue, Semaphore

— 0: CopyOnWriteArraySet, CyclicBarrier, Exchanger, Phaser,
PriorityBlockingQueue JavaSpecialists.cu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Let's Say That Again

® Use extremely common thread-safe classes

— ConcurrentHashMap
— LinkedBlockingQueue
— ConcurrentLinkedQueue

® | only found bugs in rarely used classes

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Before we continue ...

® Get our Data Structures in Java Course here

— tinyurl.com/jddkrakow25
e WiFi SSID: JavaKrakow
e Password: HelloWorld2025

— Coupon expires today at 16:00
 You have life-time access to course
 But try complete before end December

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent 19

) JavaSpecialists

Lessons from Striped64

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

LongAdder vs AtomicLong

® Let's do a quick comparison of incrementing 100m times

— AtomicLong vs LongAdder (Striped64)

IntStream.range(0, 100_000_000) tinyurl.com/jddkrakow25
.parallel()
.forEach(_ -> atomicLong.getAndIncrement());

ol ™o =

IntStream.range(0, 1600_000_000) E _,]_5_ E
.parallel() -
.forEach(_ -> longAdder.increment());

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Demo
® Magic? Let's look at how LongAdder / Striped64 works

tinyurl.com/jddkrakow25

o]
x

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Takeaways

® Best way to deal with contention is to not have any

tinyurl.com/jddkrakow25

o]
x

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent 23

) JavaSpecialists

"__,.—- g

Changing Hardware Landscape

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Changing Hardware Landscape

® Started coding Java in 1997

— 64 MB of RAM, single core, 233 MHz, 32 bit
 And that was one of the better machines in the company

— My laptop has 96 GB of RAM, 12 cores, 38 GPU cores, 3.7GHz, 64-bit

® Memory was scarce

— Could not imagine creating a collection with billions of entries
— Only platform threads - limited to thousands

JavaSpecialists.cu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Bugs at the Limits

® Oodles of memory and virtual threads

— Bug In LinkedBlockingDeque allowed us to fill it with too many items
* size() returned a negative value

— www.javaspecialists.eu/archive/lssue328.html
e Fixed in Java 26

— Bug in ReentrantReadWriteLock ran out of read locks after 65536

 Resulted in Error being thrown
— Could not have conceived a system with that many threads
* Fixed in Java 25

® Demo: ManyReadLocks JavaSpecialists.c.

http://www.javaspecialists.eu/archive/Issue328.html

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent 26

) JavaSpecialists

"_,..-_

Startin g Gun Sy nchronizer

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

StartingGun Synchronizer

® Let's say we have a service that takes time to be started

— Any other part of the system that depends on it should wait
e But we do not want to deal with InterruptedException

— Once all the data is set up, we call ready(), awaking waiting threads

public interface StartingGun A
void awaitUninterruptibly();
void ready();

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Using synchronized and wait()/notifyAll()

public class StartingGunMonitor implements StartingGun {
private boolean ready = false;
public synchronized void awaitUninterruptibly() {
boolean interrupted = Thread.interrupted();
while (!ready) 1

wait(); // not fully compatible with older Loom versions
} catch (InterruptedException e) {
interrupted = true;

}.
}.

if (interrupted) Thread.currentThread().interrupt();

!
public synchronized void ready() { ready = true; notifyAll(); }

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Basing StartingGun on CountDownLatch

public class StartingGunCountDownLatch implements StartingGun {
private final CountDownLatch latch = new CountDownLatch(1);
public void awaitUninterruptibly() {
var interrupted = Thread.interrupted();
while (true) A
try {
latch.await();
break;
} catch (InterruptedException e) A
interrupted = true;

1
1
if (interrupted) Thread.currentThread().interrupt();

}.

ublic void read Latch.countDown(); e
) P Vi Qi h JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Issues With These Approaches

® Synchronized wait() not fully compatible with virtual threads

— Fixed in Java 24

® Both times, interrupt would cause InterruptedException

— We hide it, but we still pay the cost of creating the exception

® Another way is to copy what CountDownLatch does

— Quick demo

JavaSpecialists.cu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent 31

) JavaSpecialists

Lock Splitting:
LinkedBlockingQueue

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

LinkedBlockingQueue Design

® Single lock would cause put()/take() contention

® Has separate putLock and takeLock ReentrantLock

— We can put() and take() from a single queue at the same time

— Has higher throughput for the SPSC case
 And surprises for the SPMC case

— Subtleties regarding visibility due to two locks
 Use Atomicinteger count as a volatile synchronizer

® Demo LockSplittingDemo

JavaSpecialists.cu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent KX

) JavaSpecialists

Weakly Consistent Iterators —
ArrayBlockingQueue

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

ArrayBlockingQueue Circular Array Queue

® Weakly consistent iteration

— ArrayDeque would cause a ConcurrentModificationException

var gueue = new ArrayBlockingQueue<Integer>(10);
Collections.addAll(queve, 1, 2, 3, 4, 5);

var iterator = queuve.iterator();

for (int i = 0; i < 3; i++) System.out.println(iterator.next()); // 1, 2, 3
Collections.addAll(queuve, 6, 7, 8, 9, 10);

iterator.forEachRemaining(System.out: :println); // 4, 5, 6, 7, 8, 9, 10
— However, what if we circle completely around the array?

* ArrayBlockingQueue has to notify its current iterators
— But how?

® Demo WeaklyConsistentViaWeakReferences JavaSpecialists..

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent 35

J JavaSpecialists

Do U’bxlle -Checked-Locking —
CopyOnWriteArrayList

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

CopyOnWriteArrayList DCL

® In several places, checks before locking

public boolean remove(Object o) A
Object[] snapshot = getArray();
int index = indexO0fRange(o, snapshot, 0, snapshot.length);
return index >= 0 && remove(o, snapshot, index);

1
// also addIfAbsent(E e),

® Demo DCLONSteroidsCOWDemo

JavaSpecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent 37

) JavaSpecialists

Conclusion

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

The Java Specialists' Newsletter

® Join our Java Specialists community

— www.javaspecialists.eu/archive/subscribe/

® Readers In 150+ countries

® 25 years of newsletters on advanced Java

— All previous newsletters available on www.javaspecialists.eu

— Longest running Java newsletter in the world
— Courses, consulting, additional training, etc.

JavaSpecialists.cu

http://www.javaspecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Don't Forget ...

® Get our Data Structures in Java Course here

— tinyurl.com/jddkrakow25

— Coupon expires today at 16:00
e You have life-time access to course

® For those watching the recording

— Sign up to The Java Specialists' Newsletter az. .

e www.javaspecialists.eu
 Reply to the welcome mail that you would

like this course

http://www.javaspecialists.eu

